3.1364 \(\int \frac{(b d+2 c d x)^{3/2}}{\sqrt{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=132 \[ \frac{2 d^{3/2} \left (b^2-4 a c\right )^{5/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{3 c \sqrt{a+b x+c x^2}}+\frac{4}{3} d \sqrt{a+b x+c x^2} \sqrt{b d+2 c d x} \]

[Out]

(4*d*Sqrt[b*d + 2*c*d*x]*Sqrt[a + b*x + c*x^2])/3 + (2*(b^2 - 4*a*c)^(5/4)*d^(3/2)*Sqrt[-((c*(a + b*x + c*x^2)
)/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(3*c*Sqrt[a + b*x
+ c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.116392, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {692, 691, 689, 221} \[ \frac{2 d^{3/2} \left (b^2-4 a c\right )^{5/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{3 c \sqrt{a+b x+c x^2}}+\frac{4}{3} d \sqrt{a+b x+c x^2} \sqrt{b d+2 c d x} \]

Antiderivative was successfully verified.

[In]

Int[(b*d + 2*c*d*x)^(3/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(4*d*Sqrt[b*d + 2*c*d*x]*Sqrt[a + b*x + c*x^2])/3 + (2*(b^2 - 4*a*c)^(5/4)*d^(3/2)*Sqrt[-((c*(a + b*x + c*x^2)
)/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(3*c*Sqrt[a + b*x
+ c*x^2])

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{(b d+2 c d x)^{3/2}}{\sqrt{a+b x+c x^2}} \, dx &=\frac{4}{3} d \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{1}{3} \left (\left (b^2-4 a c\right ) d^2\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}} \, dx\\ &=\frac{4}{3} d \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{\left (\left (b^2-4 a c\right ) d^2 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{3 \sqrt{a+b x+c x^2}}\\ &=\frac{4}{3} d \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{\left (2 \left (b^2-4 a c\right ) d \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{3 c \sqrt{a+b x+c x^2}}\\ &=\frac{4}{3} d \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{2 \left (b^2-4 a c\right )^{5/4} d^{3/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{3 c \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.109234, size = 111, normalized size = 0.84 \[ \frac{2 d \sqrt{d (b+2 c x)} \left (\left (b^2-4 a c\right ) \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )+2 c (a+x (b+c x))\right )}{3 c \sqrt{a+x (b+c x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*d + 2*c*d*x)^(3/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(2*d*Sqrt[d*(b + 2*c*x)]*(2*c*(a + x*(b + c*x)) + (b^2 - 4*a*c)*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*Hyp
ergeometric2F1[1/4, 1/2, 5/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(3*c*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.218, size = 362, normalized size = 2.7 \begin{align*} -{\frac{d}{3\,c \left ( 2\,{c}^{2}{x}^{3}+3\,bc{x}^{2}+2\,acx+{b}^{2}x+ab \right ) }\sqrt{d \left ( 2\,cx+b \right ) }\sqrt{c{x}^{2}+bx+a} \left ( 4\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}ac-\sqrt{{ \left ( b+2\,cx+\sqrt{-4\,ac+{b}^{2}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}}}\sqrt{-{(2\,cx+b){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}}}\sqrt{{ \left ( -b-2\,cx+\sqrt{-4\,ac+{b}^{2}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}}}{\it EllipticF} \left ({\frac{\sqrt{2}}{2}\sqrt{{ \left ( b+2\,cx+\sqrt{-4\,ac+{b}^{2}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}}}},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}{b}^{2}-8\,{c}^{3}{x}^{3}-12\,b{c}^{2}{x}^{2}-8\,xa{c}^{2}-4\,x{b}^{2}c-4\,abc \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

-1/3*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*d*(4*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2
*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2
*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+b^2)^(1/2)*a*c-((b+2*c*x+(-4*a*c+b
^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*
a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(
-4*a*c+b^2)^(1/2)*b^2-8*c^3*x^3-12*b*c^2*x^2-8*x*a*c^2-4*x*b^2*c-4*a*b*c)/c/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x
+a*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{3}{2}}}{\sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(3/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (2 \, c d x + b d\right )}^{\frac{3}{2}}}{\sqrt{c x^{2} + b x + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral((2*c*d*x + b*d)^(3/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d \left (b + 2 c x\right )\right )^{\frac{3}{2}}}{\sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**(3/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d*(b + 2*c*x))**(3/2)/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{3}{2}}}{\sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(3/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(3/2)/sqrt(c*x^2 + b*x + a), x)